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A new approximate theory is proposed for treating the flow past smoothly 
contoured two-dimensional bluff bodies in the intermediate Reynolds number 
range O(1) < Re < 0(102), where the displacement effect of the thick viscous 
layer near the surface of the body is large and a steady laminar wake is present. 
The theory is based on a new pressure hypothesis which enables one to take 
account of the displacement interaction and centrifugal effects in thick viscous 
layers using conventional first-order boundary-layer equations. The basic 
question asked is how the wall pressure gradient in ordinary boundary -layer 
theory must be modified if the pressure gradient along the displacement surface 
using the Prandtl pressure hypothesis is to be equal to the pressure gradient 
along this surface using a higher-order approximation to the Navier-Stokes 
equation in which centrifugal forces are considered. The inclusion of the normal 
pressure field with displacement interaction is shown to be equivalent to stretch- 
ing the streamwise body co-ordinate in first-order boundary-layer theory such 
that the streamwise pressure gradient as a function of distance along the original 
and displacement body surfaces are equal. 

While the new theory is of a non-rigorous nature, it yields results for the 
location of separation and detailed surface pressure and vorticity distribution 
which are in remarkably good agreement with the large body of available 
numerical Navier-Stokes solutions. A novel feature of the new boundary-value 
problem is the development of a simple but accurate approximate method for 
determining the inviscid flow past an arbitrary two-dimensional displacement 
body with its wake. 

1. Introduction 
Until very recently the development of approximate theoretical models for 

solving the Navier-Stokes equations for laminar flow have been limited to either 
very low Reynolds numbers, Re < 1, where inertia effects are either neglected or 
linearized, or very high Reynolds numbers, lo3 c Re < lo8, where the sim- 
plifications of Prandtl’s thin-boundary-layer theory are valid. Existing theo- 
retical studies of flows in the intermediate Reynolds number range 1 < Re < 103 
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have been confined primarily to numerical solutions of the full Navier-Stokes 
equations. These exact solutions, which provide an invaluable guide for the 
construction of approximate theoretical models, require large amounts of com- 
puter time on even the most advanced of the present generation of computers. 
The recent numerical studies of Gluckman (1971), Ghia & Davis (1974), Briley 
& McDonald (1974), Werle & Bernstein (1975) and Ghia, Ghia & Tesch (1975), 
however, strongly suggest that flows in the lower portion O( I)  < Re < O( lo2) of 
this intermediate Reynolds number range, where a steady laminar wake is 
observed on bluff bodies, can be analysed using boundary-layer-like models 
provided the viscous-inviscid displacement interaction with the external 
inviscid flow is adequately treated. 

The present investigation proposes an approximate model, based on a new 
pressure hypothesis, which is able to predict to within a few per cent the location 
of separation and the detailed surface pressure and vorticity distribution on 
smoothly contoured semi-infinite and finite bodies. Detailed numerical com- 
parisons with available two-dimensional finite-difference solutions of the Navier- 
Stokes equations for parabolas and circular cylinders are given. Equally good 
agreement with exact Navier-Stokes solutions for the axisymmetric flow past 
paraboloids of revolution and spheres is demonstrated in a companion paper, 
Kolansky et al. (1976). 

Some idea of the magnitude of the displacement interaction on a bluff body a t  
Reynolds numbers typical of those considered in the present study can be 
gleaned from the following example. At Re = 30 the displacement thickness a t  
the forward stagnation point on a circular cylinder is about 15 yo of its radius. 
At the location of separation, which is approximately 130" from the forward 
stagnation point for this Reynolds number, the displacement thickness has 
grown to about 0.7 radii and increases rapidly in the separated flow downstream. 
It is not surprising in view of the large changes in effective body shape which the 
external inviscid flow must experience at these Reynolds numbers that a theory 
of successive approximation which is based on the potential flow past the original 
body shape will converge very slowly. This would appear to be the basic difficulty 
encountered in extending the results of second-order boundary-layer theory (Van 
Dyke 1962) to flows with Reynolds numbers less than about lo3. 

In  the past few years Davis, Ghia, Werle and co-workers have performed a 
series of numerical experiments, summarized in Ghia et al. (1975), that greatly 
elucidate the importance of the various terms in the Navier-Stokes equations 
in the Reynolds number range O(1) < Re < O(lO3). In  these numerical experi- 
ments several different approximate models of the complete two-dimensional 
Navier-Stokes equations are considered. In  each model one solves an approximate 
viscous flow equation for the vorticity distribution throughout the entire flow 
field and a stream-function equation relating the vorticity w to the two-dimen- 
sional stream function $. In  the most accurate model, termed the parabolized- 
vorticity approximation (Ghia & Davis 1974), only the streamwise diffusion 
terms are dropped from the Navier-Stokes vorticity equation and the full 
elliptic stream-function equation is used. The results obtained are in almost 
perfect agreement with the exact Navier-Stokes solutions of Davis (1972) for 
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the flow past a parabola and of Ghia & Davis (1974) for the two-dimensional 
flow past a semi-infinite body with a shoulder, in which separation can occur 
depending on the shoulder bluntness. In  a second model the curvature terms are 
omitted from the parabolized vorticity equation. The agreement with exact 
Navier-Stokes solutions is not quite as satisfactory as for the first model but 
still a significant improvement over that for conventional boundary-layer theory. 
In  both these models the viscous-inviscid interaction describing the displace- 
ment and separation effects is automatically included since the full elliptic 
stream-function equation is used for the entire flow field. In  a third model, called 
the parabolic approximation, the curvature terms are retained in the parabolic 
approximation to the Navier-Stokes vorticity equation, as in the first model, 
but a boundary-layer-like stream function is employed. Very good agreement 
with exact Navier-Stokes solutions could be obtained, except for cases of 
extreme shoulder curvature, provided that either the Navier-Stokes surface 
vorticity or the Navier-Stokes stream-function distribution in the inviscid 
external flow is prescribed. No difficulty is encountered in integrating through 
the separation-point singularity, confirming the result first reported by Catherall 
& Mangler (1966), that if the displacement interaction was properly accounted 
for, this singularity in the forward numerical integration of the boundary-layer 
equations could be removed. If, on the other hand, the Navier-Stokes interaction 
pressure or velocity field a t  the edge of the viscous layer was prescribed instead 
of the aforementioned vorticity or stream-function distribution, the difficulty in 
integrating through the separation point still persisted. 

Further important evidence that the boundary-layer equations are still an 
adequate description of the development of the velocity profile in a thick viscous 
layer with strong displacement interaction is found in the work of Gluckman 
(1971) and Werle & Wornom (1972). These two studies show that, if either 
experimentally measured or Navier-Stokes surface pressure distributions are 
used to drive the Prandtl boundary-layer equations, good predictions of the 
location of the separation point and the surface vorticity distribution are 
possible for the flow past a circular cylinder for the entire range of Reynolds 
numbers where a steady wake separation bubble exists, even though all curvature 
effects have been omitted. These findings a t  first glance appear to contradict the 
results reported in Ghia et al. (1975), where curvature effects were shown to be 
important if close numerical agreement with the Navier-Stokes solutions was 
to be obtained. This can be explained if the curvature effects omitted from the 
boundary-layer equations themselves are retained in the description of the 
viscous layer as a modification of the surface pressure boundary condition. The 
results presented in this study provide strong evidence that this is indeed the 
case, since it is demonstrated that, if the streamwise co-ordinate along the body 
surface is stretched in accordance with the new pressure hypothesis derived 
herein, the pressure distribution along the surface of the body will agree remark- 
ably well with the Navier-Stokes surface pressure distribution. The new pressure 
hypothesis states that if the conventional Prandtl boundary-layer equations are 
to include the lowest-order curvature effects in the viscous layer then the stream- 
wise pressure gradient as a function of distance along the body surface should 
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be equal to the local pressure gradient as a function of distance along the dis- 
placement body. The hypothesis implies that the effective pressure interaction 
distance for a viscous layer with curvature using first-order boundary-layer 
equations is the streamwise distance measured along its centroid of vorticity. 
Lighthill (1958) has shown that this centroid is equivalent to the local displace- 
ment thickness of the viscous layer. 

The crucial problem in the development of any approximate theory based on 
the matchmg of an inner viscous and outer inviscid flow is the construction of an 
effective displacement body when the inviscid pressure distribution used to 
determine the viscous-layer displacement growth is also unknown. I n  a matching 
problem of this nature one attempts to develop an iterative solution scheme 
based on a judicious initial guess of either the viscous-layer displacement growth 
or the inviscid pressure field. The same difficulty as caused the iterative solution 
procedure of second-order boundary-layer theory to break down a t  lower Re, 
the large distortion in effective body shape due to the displacement interaction 
of the thick viscous layers, however, can be used to advantage in a different 
scheme of successive approximation. For flows whose Reynolds numbers are 
O( lo2) or less the details of the wake separation bubble on a bluff object such as a 
cylinder are completely enshrouded in the thick viscous layers that have 
developed along the body surface. As far as the inviscid outer flow is concerned, 
it is more important to approximate the qualitative shape and dimensions of the 
effective displacement body and its wake than the detailed geometry of the 
original body or the fine-structure of the separated flow region. To this end one 
seeks an iterative approximation procedure in which the lowest-order solution 
for the growth of the displacement thickness along the body surface already 
takes into account the change in surface pressure gradient due to the local 
enlargement of the body and centrifugal effects. The local inviscid pressure 
gradient obtained from a geometrically similar body whose local radius is equal 
to the local body radius plus the local displacement thickness provides a con- 
venient geometry for generating the lowest-order solution. This simplified body 
approximately reproduces the local radius of curvature of the effective displace- 
ment body, the local flow characteristic which is of greatest importance according 
to the new pressure hypothesis stated above. The lowest-order approximation 
for the displacement body is now used to generate a new inviscid pressure 
distribution, which in turn is used to calculate a more accurate displacement- 
thickness distribution. The procedure is repeated until a converged solution of 
predetermined accuracy is obtained. 

In  $ 2  we present the theoretical motivation behind the new pressure hypo- 
thesis. Section 3 states the boundary-value problems for the viscous and inviscid 
flow regions. The general solution procedure is outlined in $4.  Sections 5 and 6 
describe the application of the new displacement interaction model to parabolic 
and circular cylinders and present detailed numerical comparisons with existing 
exact Navier-Stokes solutions for the flow past these bodies. Section 7 briefly 
discusses the results for other boundary shapes and concludes with some general 
comments about the validity and accuracy of the model. 
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2. The new pressure hypothesis for the viscous layer 
In  the conventional construction of the displacement body one refers the 

pressure along its surface back to the surface of the original body along the 
normal boundary-layer co-ordinate, treating the pressure as independent of this 
co-ordinate. This pressure mapping has implicit in it the assumption that the 
pressure gradient measured along the surfaces of the actual body and the dis- 
placement body are related by 

d p  R* d p  
ds, R,ds*’ 
_-  - -- 

where the subscript w denotes the wall, the superscript * the displacement body, 
s the distance along each surface and R the local radius of curvature assuming 
that both surfaces are nearly parallel. .The difference in pressure gradient is thus 
O(6) and is strictly a geometrical consequence of the wall curvature and is not 
related to the centripetal force field. 

We now wish to examine how the streamwise pressure gradient vanes across 
a thick viscous layer in which centrifugal effects are present to see how (1) must 
be modified to obtain a more accurate description of the wall pressure gradient. 
To this end we examine the following approximate set of governing equations 
for the viscous laver: 

where s and n here refer to natural streamline co-ordinates. Note that the higher- 
order curvature correction for the viscous term in (2) has been omitted. 

The simplifying feature of supersonic viscous-inviscid interaction theory is that 
there is a local relation between pressure and flow angle at the edge of the bound- 
ary layer. This simplification permits one to derive using rational asymptotic 
arguments the characteristic streamwise distance for a self-induced displacement 
interaction leading to separation and the characteristic thickness of the viscous 
sublayer near the wall. No equivalent rational theory has yet been developed for 
incompressibIe displacement interactions on bluff bodies leading to separation?. 
For high Reynolds number flow the size of the separated flow region is typically 
of the order of the body dimensions though the length of run for which the body 
boundary layer can withstand an adverse pressure gradient without separating 
is considerably shorter. For the thick viscous layers characteristic of the inter- 
mediate Reynolds number flows examined in the present study one observes that 

t Recent theoretical studies of the displacement interaction at  the trailing edge 
of a flat plate based on the asymptotic analyses of Stewartson (1969) and Messiter (1970) 
offer promise that such a rational theory can also be developed for bluff bodies at least 
in the limit of infinite Re. An intriguing feature of the asymptotic sharp trailing edge 
solution is that it agrees rather well with numerical Navier-Stokes solutions for Re in the 
range O(1) to 0(102) considered herein. For bluff bodies one would not expect this 
agreement with an asymptotic analysis because of the important changes in effective 
wake shape as Re decreases. 
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the displacement thickness can double over a distance which is of the same order 
as the viscous layer's thickness. In  accord with these remarks, we introduce the 
following dimensionless scaled co-ordinates into (2) and (3): 

Here So = Re-tR, is the characteristic thickness of the viscous layer and the 
Reynolds number is based on the body dimension Ro and the free-stream velocity 
Urn. Differentiating (3) with respect to s and substituting for uaulas from (2) 
gives the following differential equation for the variation of the dimensionless 
streamwise pressure gradient across the viscous layer: 

where the local radius of curvature is approximated by fi = fi, +Red%. 

The integral of (5) which satisfies the condition 

a$/% = a@/agw at fi = 0 

is 

where the tildes have been dropped. Equation (6) relates the streamwise pressure 
gradient at any height n in the viscous layer to the wall pressure gradient aplas,. 
The first term on the right-hand side of (6) represents the centrifugal correction 
due to the change in streamline curvature as one moves away from the wall. The 
second term represents the correction due to the streamwise change in curvature 
of the wall. This term vanishesfora circular cylinder andin general will be smaller 
than O(Re-3) unless R, changes to lowest order on a length scale O(8,). The quan- 
tities in parentheses in the third term constitute the viscous correction and are 
observed to be O(Re-l) or smaller. The dominant correction to the streamwise 
pressure gradient as one moves away from the wall is thus seen to arise from the 
first term except in local regions with large changes in wall curvature, where the 
second term on the right-hand side of (6) will also be important. The viscous 
correction is of higher order in Re since the variation in the normal pressure field 
is principally due to centrifugal effects. 

The important result which we wish to obtain from (6) is the relationship 
between the wall pressure gradient and the streamwise pressure gradient acting 
along the fictitious surface which the external flow perceives as the effective body 
shape including displacement effects. Denoting this effective displacement body 
by R* and neglecting the higher-order viscous corrections, one finds from (6) that 

We now return to the original problem posed just prior to (2). The essential 
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question is whether (I), which is based on first-order boundary-layer theory and 
neglects all centrifugal effects, can be simply modified such that it generates a 
displacement body which has the same pressure distribution along its surface as 
that predicted by (7), which includes these effects. For the two pressure dis- 
tributions to be equal to within an arbitrary constant one equates ap/as* in (1) 
and (7). Denoting the wall pressure gradient predicted by (7) by the subscript n 
to signify the presence of the normal pressure field, one obtains 

For smoothly contoured bodies without rapid changes in surface curvature (8) 
reduces to 

- = -  " ,  dsw = (R*/Rw)ds,, = ds*. dp  
ds* ds, 19) 

Equat,ion (9) states that the pressure gradient along the effective displacement 
body constructed in the conventional manner using first-order boundary-layer 
theory will be the same as in a viscous-layer theory which includes centrifugal 
forces provided the differential distance element ds,, along the body surface is 
stretched by the factor R*/Rw in mapping the pressure distribution from the 
displacement body back to the surface of the original body. This stretching 
implies that the pressure is referred from the displacement body back to the 
original body in a manner that preserves arc length, that is ds, = ds*. 

The principal assumption introduced in the derivation of the new pressure 
hypothesis (8) or (9), is that the characteristic streamwise length scale for the 
displacement-induced viscous-inviscid interaction for a thick viscous layer is 
approximately O(6,). The assumption is based on numerical and experimental 
observations and not rational theoretical arguments. It is also assumed that the 
displacement surface is represented by a streamline in the viscous layer [see (7)] 
and that the local radius of curvature of the displacement body is equal to the 
local radius of curvature of the original body plus the local displacement thick- 
ness. Both assumptions are reasonable approximations at best. The derivation, 
despite its non-rigorous nature, leads to a result which greatly simplifies the 
treatment of curvature effects in thick viscous layers and provides remarkably 
good agreement with exact Navier-Stokes solutions. 

I n  concluding this section we should mention that several other derivations 
of the pressure hypothesis have been tried. One approach that appeared parti- 
cularly promising was based on the observation of Davis (1974) that the dis- 
placement body in the several flow geometries that he considered could be 
closely approximated by a conformal co-ordinate system. If this were the case 
then the flow past the displacement body could be transformed into a stagnation- 
point flow through a conformal mapping. As is well known the pressure gradient 
in a stagnation-point flow does not vary normal to the wall. This suggested that 
the streamwise pressure gradient might also exhibit special properties when its 
variation along the conformal co-ordinate normal to the displacement body was 
examined. One finds that for the flow past a wedge the normal derivative of the 
streamwise pressure gradient a t  the wedge surface vanishes but that this property 
is not in general true for other geometries. 
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FIGURE 1. Boundary-layer co-ordinate system. 

3. The new boundary-value problem 
The new boundary-value problem for the matching of the inner viscous and 

outer inviscid flow fields differs from conventional theory principally in the 
construction of the effective displacement body and the application of the 
pressure hypothesis used to determine the wall pressure distribution. The 
governing equation for the viscous layer is the usual first-order boundary-layer 

Here x measures distance s, along the original body surface and the pressure 
gradient is determined by the inviscid flow past the effective displacement body 
in accord with the pressure hypothesis (9). This hypothesis requires that 

dpldx = dp/dx* with x = x*, (11) 

where x* is the distance s* from the forward stagnation point of the displacement 
body. The pressure as a function of distance along the original body and the 
pressure as a function of distance along the displacement body are thus equal 
except for an additive constant due to viscous losses in total pressure along the 
streamline passing through the forward stagnation point. Since r* > rw the local 
polar co-ordinate 8 is stretched such that 8 > 8" as shown in figure 1. 

The effective displacement body is constructed by adding the displacement- 
thickness distribution 

(12) 

obtained from the solution of (10)  for the velocity profile, to the original body 
surface. This construction differs from the conventional method of constructing 
the displacement body in that the inviscid pressure gradient at the position x* 
(angular location 8*) on the displacement surface is used to calculate the dis- 
placement thickness 6* at the position x (angular location 8) on the original body 
in accord with the pressure mapping described by ( 1  1 ) .  

The inviscid pressure distribution and the velocity V ( x * )  at the surface of the 
displacement body are determined from the solution to the potential flow 

(13) 
equation 

6*(x) = - U ( x )  J-)(u(x)-u)dy, 0 

vzqi = 0 
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for the velocity field. This solution satisfies the usual inviscid boundary con- 
dition that the normal component of the velocity vanishes at the displacement 
surface, i.e. 

v(z*) = 0 on r = r*. (14) 

Since the solution for 6*(x) depends on the solution for U ( z )  and both are 
unknown, the solutionof (lo)-( 14) represents a coupled nonlinear boundary-value 
problem. I n  essence, we wish to solve (13) subject to the known boundary 
condition (14) along an unknown surface, the effective displacement body. This 
body is determined from the solution of (lo), in which the surface pressure 
distribution satisfies the pressure hypothesis (1 1) and must be obtained through 
a process of iterative approximation. 

4. Solution procedure 
The solution of the boundary-value problem just described to determine the 

effective displacement body requires that we make an initial guess of either the 
displacement-thickness distribution or the pressure distribution used in (10) to 
determine this distribution. The rapidity of convergence of the solution procedure 
depends in large measure on how good this initial estimate of S* or dpldx is. For 
the reasons stated in the introductory section, it appears that the critical con- 
siderations in optimizing this f i s t  guess are the ability to reproduce the quali- 
tative dimensions of the effective displacement body while taking account of the 
centrifugal effects in the thick viscous layer through the use of the new 
pressure hypothesis. An additional improvement in making this first guess can 
be obtained if at each step in the forward numerical integration of (10) the 
solution for the displacement-thickness distribution up to that step is somehow 
incorporated in the assumed expression for the local pressure gradient. To try 
to curve fit the displacement body accurately at each forward integration step 
would be extremely time consuming. A convenient practical expedient which 
uses the latest knowledge of the growth of the displacement body and provides 
improved numerical results is to represent the displacement body by a family of 
geometrically similar bodies whose local radius is the same as the local radius 
of the displacement body. 

The above considerations were the important motivations behind the first 
trial solution for the displacement body that we have adopted. A summary of 
the complete solution procedure including the first trial solution is given below. 

4.1. First trial solution for the displacement body 

(1) Both the displacement thickness and the pressure gradient at the forward 
stagnation point are unknown. To approximate the displacement body a family 
of geometrically similar bodies with the same focal point as the original body is 
selected. The pressure or velocity gradient at the forward stagnation point on 
the displacement body is written in terms of the unknown displacement thick- 
ness and applied at the surface of the original body using the pressure stretching 
hypothesis (1  1). This expression is then solved simultaneously with (10) applied 
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at the forward stagnation point. The solution technique is illustrated in $4.3 for 
the case of a circular cylinder. 

(2) Having obtained this first trial solution for 6*, dpfdx and the velocity 
profile a t  the forward stagnation point, one performs a forward numerical 
integration of (10). For present purposes it was deemed satisfactory to use the 
momentum integral approximation to (10) rather than the more accurate finite- 
difference solutions in view of the other approximations introduced. At each 
forward integration step the pressure gradient is represented by the local pressure 
gradient for the inviscid flow past the geometrically similar body whose local 
radius from the focal point of the original body is equal to that of the displace- 
ment body. From (1 1) this pressure gradient is also equal to the pressure gradient 
along the original body surface. 

(3) The displacement-thickness distribution obtained from the solution des- 
cribed in step 2 is now added on normally to the surface of the original body. 
Because of the pressure mapping (11) the pressure gradient a t  the position x* 
on the displacement body is used to calculate the displacement thickness a t  the 
position x = x* on the original body as shown in figure 1. This completes the 
first trial solution for the effective displacement body. 

4.2. The iteration procedure for a converged solution 

(1) As we shall observe in the results, the first trial solution just outlined 
provides a reasonable approximation to the displacement surface because it 
includes the streamwise co-ordinate straining required to describe curvature 
effects, but a poor detailed description of the surface pressure distribution since 
the actual shape of the displacement body and its wake can depart significantly 
from the family of geometrically similar bodies used in the first trial solution. 
The fist step towards obtaining a converged solution is thus to obtain a much 
more accurate representation of the potential flow pressure distribution on the 
displacement body. This task is equivalent to solving (13) and (14) for an 
arbitrary boundary shape, since the displacement body obtained as in $ 4.1 will 
not, in general have a simple analytic representation. An approximate combined 
numerical and analytical solution technique based on the boundary method has 
been developed for this purpose and is described in $4.4. 

(2) The potential flow pressure distribution on the first-order displacement 
body obtained in step 1 above is now mapped back to the surface of the original 
body using (11) .  The momentum-integral-equation form of (10) is now solved 
again using this new pressure distribution. 

(3)  The new solution for the displacement-thickness distribution found in 
step 2 is now added on normally to the surface of the original body, in the same 
manner as before, to obtain the second-order approximation to the displacement 
body. 
(4) Steps 1, 2 and 3 are now repeated to obtain the third- and higher-order 

approximations to the displacement body until convergence in either body shape 
or surface pressure distribution is achieved to within predetermined limits. 

In  accord with the preceding outline of the solution procedure, the approxi- 
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mate equation for the viscous layer is the integral of (10): 

where r,,, is the wall shear and 

is the momentum thickness. The velocity profile used is the Pohlhausen (1921) 
fourth-order polynomial profile 

where the shape factor A is defined by 
S'dU A = - -  
v ax' 

This profile provides a reasonable description up to separation and a solution of 
undetermined accuracy beyond the separation point. It is important to note that 
there is a marked difference between the velocity profiles of the separated flow 
in the present study and those a t  high Re, where there is a thin boundary-layer- 
like structure both in the reversed flow near the wall and in the separated free 
shear layers. The smoothly varying polynomial profile is much more likely to 
provide a t  least a qualitatively passable description of the separated thick 
viscous layers considered herein, where the spread of vorticity is much more 
diffuse. 

4.3. First trial solution for the forward stagnation point 

To elucidate the solution procedure described under step 1 in $4.1,  we consider 
the stagnation-point flow on a circular cylinder of unit radius. The geometrically 
similar displacement bodies considered are concentric cylinders of radius 
r* = I +S*. Both S* and dU/dx a t  the forward stagnation point are unknown. 
The potential flow solution for the velocity on the surface of a geometrically 
similar displacement cylinder of radius r* is 

U = 2U, sin O*, 

where 19 and 8" are related by O = r*O* from (11). The velocity gradient at the 
forward stagnation point on the original body surface obtained from (19) and 
the pressure transformation (1 1) is 

(19) 

dU/dx = 2U'/( 1 + 6"). (20) 

It is well known that the solution of (15) at the forward stagnation point for 
a fourth-order Pohlhausen profile leads to a cubic equation for the shape factor A 
whose physically meaningful root is A = 7-052, see Schlichting (1968, p. 197). 
The relationship between 6 and a* for this profile is S* = 1 3 ( & - ~ b A ) .  Sub- 
stituting these last two results into (18) and (20) and eliminating dU/dx as an 
unknown, one obtains S*2/ (  1 + S*) = 1.701/Re, (21) 
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where Re is the free-stream Reynolds number based on the diameter of the 
original cylinder. The physically realizable solution for 6*(0) is 

Re 

It is interesting to observe that for Re B 1 equation (22) can be developed as a 
power series in inverse half-powers of the Reynolds number. This result, 

0-657 0.213 6*(0) = - 1.304 ( I  +Re + ...), Re4 (23) 

is of the same form as one would anticipate from higher-order boundary-layer 
theory. The leading term in (23) is the same as the one obtained from the solution 
for a two-dimensional stagnation point while the higher-order terms are due to 
viscous-layer displacement and curvature effects. 

The solution procedure for other boundary shapes differs only in the expression 
for the surface velocity distribution (19). 

4.4. Inviscid $ow past the displacement body 

The crucial step in the iterative approximation procedure used to obtain a 
converged solution is the development of a simple yet accurate approximate 
technique for determining the flow past non-analytic boundary shapes. In  theory 
the exact solution for the two-dimensional streaming motion past an arbitrary 
cylinder can be represented by an appropriate surface distribution of line sources 
and sinks. Accurate approximate representations for smoothly contoured bodies 
can be obtainedusing internal source-sink distributions by applying the boundary 
method. The detailed application of the boundary method developed herein 
differs depending on whether the body is of low or high aspect ratio. I n  either 
case one starts with an unknown finite distribution of N sources and sinks of 
strength m, located at positions xi along the plane of symmetry of the body and 
placed in a uniform stream. The stream function for this flow, 

automatically satisfies (13). Far upstream of the body each term in the finite 
series vanishes and (24) reduces to the stream function for a uniform stream. Far 
downstream the @ = 0 streamline, representing the displacement body, asympto- 
tically approaches a far wake of uniform thickness d determined by the net 

(25) 
7 T N  

source strength: 
d = - C mi. 

urn i=l 

The essential feature of the present application of the boundary method is 
that one wishes to satisfy the boundary conditions (14) along the arc of the 
displacement body through judicious selection of the unknown constants xi and 
mi. This is accomplished by setting @ = 0 in (24) a t  discrete points along the 
displacement surface r*(z*). The arbitrariness of the method lies in the selection 
of the boundary points and the choice as to which values of xi and mi one wishes 
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to leave unspecified. After considerable numerical experimentation two different 
procedures have been adopted in the present study. For the flow past finite bodies 
of low and moderate aspect ratio, such as the circular cylinder and ellipses 
treated herein, it  was observed that a surprisingly good representation of the 
desired $ = 0 boundary shape could be obtained using only four equally spaced 
boundary points between flow attachment and separation if both md and xi 
were left unspecified and the series in (24) was truncated a t  N = 2.  A typical curve 
fit is discussed later in figure 4. The unusually good agreement obtained using 
only two source-sink singularities can be attributed to the smoothly varying 
contour of the displacement body and the fact that the detailed geometry of the 
wake downstream of the body is not important as far as the surface pressure 
distribution is concerned, and thus does not have to be accurately modelled. 

For the flow past semi-infinite bodies, such as the family of parabolas con- 
sidered herein or finite bodies of high aspect ratio, many more boundary points 
are required for an accurate curve fit in which the $ = 0 streamline does not 
exhibit wave-like undulations, The solution of the matrix of equations derived 
from (24) when many boundary points are required is extremely tedious if both 
mi and xi are treated as unknowns since the zi appear nonlinearly as the argu- 
ments of the inverse tangents. A much simpler procedure for these extended 
bodies is to specify the source-sink locations xi and leave only the values of mi to 
be determined since these constants appear linearly in (24). A convenient but 
arbitrary selection of boundary points and source locations in this procedure is 
to position the singularities directly below the boundary points in one-to-one 
correspondence. Employing standard matrix reduction schemes for systems of 
linear equations, one can easily handle as many as I00 boundary points using 
less than a second of computer time. 

5. Parabolic cylinders 
As the first application of the new approximate theory described in $8 3 and 4, 

we consider the uniform viscous flow past a parabolic cylinder whose surface is 
defined by 

at various Reynolds numbers. This simple body shape, for which separation 
does not occur, provides a convenient geometry to test the basic hypotheses of 
the new model with existing finite-difference solutions of the Navier-Stokes 
equations (Davis 1972) and conventional boundary-layer theory. 

The family of geometrically similar parabolas used to generate the surface 
pressure distribution in (15) for the construction of the first trial guess for the 
displacement body is given by 

For c = 1 this reduces to (26) whereas for c > 1 one obtains a family of geo- 
metrically enlarged parabolas with a common focal point a t  the origin. 

y2 = 4(1 +x) (26) 

y2 = 4c2(x+c2). (27) 

The transformation w = u +ivy  where 

w = -x+ i - i c ,  (28) 
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maps the flow past the parabolic surfaces described by (27) in the complex z 
plane into a two-dimensional stagnation-point flow in the complex w plane, the 
parabolic surfaces mapping into the v axis. The solution for the complex potential 
P(w) = q5 + i$ in the transformed w plane is F(w) = U,wz. Differentiating this 
result, one obtains for the speed q in the z plane 

where the angle B* is measured from the forward stagnation 
the speed along the surface of the parabolas defined by (27) is 

q = u = u,cos+(~-e*). 

(29) 

point. From (29) 

(30) 
The potential flow solution (30) replaces (19) in the &st trial solution for the 

flow at the forward stagnation point and is also used to approximate the local 
pressure gradient in (10) or (15) as described in step 2 in $4.1. In applying the 
pressure mapping described by (11) we have related the polar angles 8 and 8* 
measured from the forward stagnation point along the original and effective 
displacement body surfaces by the arc-length formula 

In  the discussion beneath (1 I) it  was mentioned that the pressure distributions 
as functions of distance along the original and displacement surfaces respectively 
are equal to within an additive constant due to the viscous loss in total pressure 
along the stagnation streamline. To determine this constant we consider the 
two-dimensional Navier-Stokes equation in the vicinity of the stagnation point. 
I n  this region the normal velocity component is independent of x and the normal 
momentum equation reduces to 

The integral of (32) between the wall and the edge of the viscous layer, denoted 
by the subscript e, is 

(33) 

Combining this result with the Bernoulli equation applied along the stagnation 
streamline in the inviscid flow, one obtains the following expression for the 
increase in wall pressure coefficient due to viscous losses: 

l V 2  z e  = - p-'(P, - P,) - v ave/ay. 

The Reynolds number here is based on the radius of curvature R, a t  the forward 
stagnation point. For a parabola this is equal to twice the focal radius. 

I n  figures 2(a) and ( b )  we have compared the results of the present approxi- 
mate model with the numerical Navier-Stokes solutions of Davis (1972) for the 
surface pressure distribution on a parabola a t  a Reynolds number of I0 and 100. 
The importance of the viscous pressure losses predicted by (34) and the stream- 
wise stretching of the body surface co-ordinate required by the pressure hypothesis 
(11) ii3 particularly evident for the Re = 10 flow. The potential flow pressure 
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FIGURE 2. Surface pressure distribution for a parabolic cylinder. (a)  Re, = 10. -, 
Davis (1972);--- , first-order approximation; - - -, second-order approximation; ----, 
second-order boundary-layer theory; -- x -, inviscid. ( b )  Re, = 100. - ,Davis (1972); 
- - -, first-order approximation; , second-order boundary-layer theory; - x -, 
inviscid. 

distribution for the inviscid flow past the original body considerably lags the 
Navier-Stokes solution for the surface pressure over the entire body. The 
inclusion of viscous-layer displacement effects using conventional first-order 
boundary-layer theory to construct the displacement body and no stretching 
yields a curve (not shown) which is almost identical on the scale shown to the 
potential flow past the original parabola, while the inclusion of the viscous 
pressure losses from (34) serves only to elevate the surface pressure distribu- 
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FIGURE 3. Stream-function fit of the displacement body for a parabolic cylinder. Re, = 10. 
-, original body, y = 4(1 +z); ---, second-order displacement body; , second- 
order boundary-layer theory. 

tion in the forward stagnation region. A very substantial improvement in the 
agreement with the exact Navier-Stokes solutions is achieved, however, 
with both the fist- and second-order approximations to the displacement 
body using the new pressure stretching hypothesis and the viscous correction 
for the pressure loss across the layer. The fist-order approximation is based 
on the family of geometrically similar parabolas (27), the pressure gradient 
being mapped back to the body surface in accord with (31). The second-order 
approximation is based on a stream-function fit of (24) to the first-order approxi- 
mation for the displacement body. A typical curve fit employing 25 boundary 
points is able to generate a $ = 0 boundary streamline which is nearly in- 
distinguishable from the desired shape. 

At fist glance the very close agreement between the first- and second-order 
approximate solutions for the surface pressure distribution in figure 2 (a)  might 
seem surprising in view of the substantially different manner in which they were 
calculated. The reason for this close agreement is evident from figure 3, where 
we have plotted the stream-function fit to the second-order displacement body. 
The fist- and second-order displacement bodies are almost identical; one 
therefore concludes that the displacement-thickness distribution predicted by 
the potential flow past the geometrically similar family of parabolas is nearly 
the same as that predicted by (24). Also shown in the figure is the second-order 
displacement body obtained when the integral equation (15) for the viscous 
layer is solved using the potential flow past the original body and the dis- 
placement body constructed in the conventional manner. 

6. Circular cylinders 
A much more rigorous test of the new approximate theory is the flow past a. 

circular cylinder in the Reynolds number range 5 to approximately 60, where a 
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FIGURE 4. Stream-function fit of the displacement body for a circular cylinder. Re, = 10. 
-, first-order approximation; A, stream-function fit; *, match points. 
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FIGURE 6. Successive approximations for the displacement body for a circular cylinder. 
Re, = 10. - , first-order approximation; ---, second-order approximation; - - -, 
third-order approximation. 

closed steady wake separation bubble is observed in both experiments and 
numerical Navier-Stokes solutions. 

The solution scheme for circular cylinders has already been described in detail 
in $4.  Equation (15) when integrated using the surface velocity distribution 
(19) yields the first trial solution for the displacement body. This body, for a 
Reynolds number of 10, is illustrated in figure 4. Also shown in this figure is the 
approximate solution for the inviscid flow past this displacement body obtained 
using (24) with N = 2, as discussed in $4.4. The four march points used are 
denoted by asterisks. The last asterisk denotes the point of separation.The 
stream-function fit, which has been continued past the point of Separation, 
approaches the asymptotic wake width predicted by (25). The surprisingly good 
approximation that can be obtained for the displacement body using only two 
source-sink singularities is clearly evident in this figure. 

Figure 5 shows the displacement bodies obtained by the iteration procedure 
described in $ 4.2. The significant deviation between the Grst- and higher-order 
approximations arises because the second- and higher-order approximations 
predict separation a t  a smaller angle from the rear stagnation point. This is 
shown in figure 6, where we have compared the theoretically predicted location 

I0 FLU 77 
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FIGURE 6. Separation angle as a function of ReynoIds number for a circular cylinder. - ---, 
first-order approximation; --, second-order approximation; A, Takami & Keller (1969) ; 
O,Kawaguti& Jain(1966); 0, Jain &Rao(l969); +,Apelt (1961); A,GroveetaZ. (1963); 
0, Homann (1936); 0 ,  Taneda (1956); x ,  Dennis & Chang (1970). 

of separation as a function of Reynolds number with available experimental data 
and Navier-Stokes solutions. The present first-order approximation provides 
slightly better agreement than the second- and higher-order approximations at 
the higher Reynolds numbers, whereas the latter nearly exactly predict Taneda’s 
(1956) experimentally observed Reynolds number for incipient separation. The 
difference between second- and higher-order approximate solutions is in general 
very small, as observed in figure 5 .  

The crucial test of the new theory is whether it can accurately predict the 
surface pressure distribution on the cylinder. Figures 7 (a)-(c) illustrate the 
excellent results obtained using the new pressure hypothesis equation (9) or 
(11). Also shown in these figures is the surface pressure predicted by standard 
second-order boundary-layer theory using the conventional construction of the 
displacement body. In  the present study we have been primarily concerned with 
determining the surface pressure up to the point of separation, since the fourth- 
order polynomial profile description given by (17) is a poor detailed representation 
of the flow in the separated flow region. The pressure at the rear stagnation point 
on the cylinder could, therefore, not be used as the zero reference value as is 
commonly done in the numerical Navier-Stokes solutions. Instead we have 
chosen the pressure at the forward stagnation point predicted by numerical 
Navier-Stokes solutions as the reference pressure for all the circular-cylinder 
calculations. 
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FIUURE 7. Surface pressure distribution around a circular cylinder. - , second-order 
approximation; ---, (a, ZI) Kawaguti & Jain (1966), (c) Son & Hanratty (1969); - - -, 
second-order boundary-layer theory. (a)  Re, = 10. (a) Re, = 20. (c) Re, = 40. 

The dramatic improvement over second-order boundary-layer theory in the 
prediction of the surface pressure distribution achieved by using the new pressure 
hypothesis (see figure 7) can be attributed to the greatly improved representation 
of the first-order displacement body that results from the present solution 
procedure. I n  the conventional boundary-layer theory, where the first-order 
solution for the displacement body is based on the potential flow past the original 
body surface, separation occurs a t  approximately 108" from the forward stag- 
nation point regardless of the Reynolds number. In  contrast, the stretching of 
the body co-ordinate implicit in the new pressure hypothesis leads in the first 
trial solution to a reasonable prediction of the separation-point location as 
observed in figure 6. The importance of the new pressure hypothesis is clearly 
demonstrated in figure 8, where we have compared the angular locations of the 
minimum surface pressure predicted by second-order boundary- layer theory and 
the present approximate theory respectively with available Navier-Stokes 
numerical solutions. 

Figure 9 shows a typical surface vorticity distribution. As noted in the earlier 
work of Gluckman (1971) and Werle & Wornom (1972) and mentioned in the 
introduction, the boundary-layer equations yield reasonable predictions of the 
surface vorticity distribution provided the surface pressure distribution is 
accurately known. Figures lO(a) and ( b )  show the development of the velocity 
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( b )  

FIGURE 10. Velocity-profile development in the viscous layer around 
a circular cylinder. (a) Re, = 10. (a) Re, = 60. 

profile in the viscous layer and the growth of the boundary-layer thickness up 
to separation at Reynolds numbers of 10 and 60 respectively. Figure 10 ( b )  also 
shows the shape that the fourth-order polynomial profile assumes shortly 
downstream of separation. No difficulty is encountered in integrating the 
momentum integral equation (15) through separation using the interaction 
pressure field. Thus if a more accurate family of separated flow profiles is con- 
structed one should be able to obtain reasonable solutions for the wake separation 
bubble. This possibility is currently being studied. 

7. Additional results and comments 
Available published two-dimensional numerical Navier-Stokes solutions have 

primarily focused on the parabolic- and circular-cylinder geometries already 
discussed and the conformal family of semi-infinite bodies with a shoulder treated 
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FIGURE 11. Separation angle as a function of Reynolds number for elliptic 
cylinders, with aspect ratio as a parameter. First-order approximation. 

by Davis and co-workers. Based on the derivation presented in 3 2, the approxi- 
mate theory described herein is confined to smootkIy contoured bodies whose 
shoulder radius of curvature does not vary rapidly over a distance comparable 
to the local boundary-layer displacement thickness. Other, unpublished two- 
dimensional numerical Navier-Stokes solutions for which the present theory is 
applicable have been privately communicated to the authors. S. C. R. Dennis 
has recently examined the Reynolds number for incipient separation on an 
elliptic cylinder whose aspect ratio (ratio of major to minor axis, the major axis 
being oriented parallel to the flow direction) is 5.0. The numerical results indicate 
that the Reynolds number for incipient separation based on the major axis is 
nearly 200 compared with a value of only 6 for a circular cylinder; see figure 6. 
This interesting result prompted the authors to undertake a study of the effect 
of aspect ratio on the angle of separation $ for various elliptic cylinders. The 
angle $ is measured from the rear stagnation point to the radius vector from the 
geometric centre of the body. These results using the new approximate theory 
are shown in figure 11. Incipient separation for an elliptic cylinder whose aspect 
ratio is 5-0 occurs according to the present theory at a Reynolds number of 
approximately 100. While thisvalue appears to differ significantly from that found 
by Dennis, one observes in figure 11 that the separation angle at a Reynolds 
number of 200 is still only a few degrees. The wake separation bubble would, 
therefore, be very small and difficult to detect in any event. 

The new pressure hypothesis and approximate theory described herein have 
also been applied to a variety of semi-inhite and finite axisymmetric three- 
dimensional bodies; the results are reported in a companion paper (Kolansky 
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et al. 1977). The agreement with available numerical Navier-Stokes solutions 
for the flow past paraboloids of revolution and spheres is on a par with that 
of the two-dimensional results presented herein. 

In  summary, the proposed approximate theory, which is based on a reasonable 
intuitive derivation rather than rational arguments, has been shown to be in 
very good agreement with a broad spectrum of numerical Navier-Stokes solutions 
for the flow past smoothly contoured bodies in the Reynolds number range 5 to 
approximately 100. The theory can be easily applied to many boundary shapes 
for which published numerical Navier-Stokes solutions do not currently exist, 
e.g. the elliptic cylinders just considered. The important fundamental con- 
tribution of the study is the improvedunderstanding of the role and construction 
of the displacement body and the effect of centrifugal forces in thick viscous 
layers. Computational times required to obtain a, converged solution for most 
cases shown vary between 1 and 5 seconds on an IBM 360/65 computer. 

This research was supported by the Office of Naval Research under contract 
NR-061-208. 
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